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Abstract. We develop an analytical procedure to determine orbits that a harmonically driven,
damped pendulum describes in the phase plane. The theory predicts the existence of more than one
solution for the same system, depending on initial conditions. Also, it predicts a stable solution
around the top position of the pendulum. Trajectories obtained by numerically integrating the
pendulum equation in a phase-locked condition agree with our diagrams. Some periodic solutions
were found that are not orbitally stable.

1. Introduction

The differential equation that describes the dynamical behaviour of a harmonically driven,
linearly damped pendulum in a gravitational field is

θ̈ + σ θ̇ + (ω0)
2 sin θ = A sinωdτ (1.1)

where θ is the angular displacement from the vertical resting axis at a time τ ;ω0 is the undamped
natural frequency for small-amplitude oscillations; ωd is the frequency of the driving and σ
and A are the damping constant and the amplitude of the external driving, respectively, in
appropriate units. This equation appears as valid for the description of other physical systems,
such as Josephson junctions [1–3], phase-locked loops (PLLs) [4,5] and charge-density wave
(CDW) conductors [6, 7].

For small oscillation amplitudes, the simple pendulum can be treated as a harmonic
oscillator obeying a linear differential equation and its dynamics can be theoretically
predicted. However, for large amplitudes several dynamical scenarios can be found, such as
development of chaotic solutions via period doubling cascades, intermittency, hysteresis, crisis
etc [8–10]. These nonlinear behaviours are usually determined through computer simulations
and experimental measurements and they are usually characterized by numerically calculating
diagram bifurcations, Poincaré maps, Lyapunov exponents, winding numbers, power spectra
and Renyi’s generalized dimensions [11–13]. Nonlinear behaviours are almost intractable,
analytically.

An interesting phenomenon which can appear in the dynamics of a harmonically driven
pendulum is phase-locking, which happens when its oscillation frequency ν becomes a rational
multiple of the frequency ωd of the driving torque [14]. The motion projection onto a phase
plane described by a phase-locked pendulum is a closed orbit, because such a motion is
periodic. Phase-locking has been experimentally detected and numerically computed in several
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works involving forced pendulums [8, 9, 15], driven Josephson junctions [16], driven CDW
conductors [17], master–slave PLL networks [18] etc.

The usual method for determining approximated phase-locked solutions consists of
expanding θ(τ ) in Fourier series [19]. However, this idea has not been fully developed.

This is what we are proposing to do here. The coupling effect among different harmonics
which occurs through a nonlinear term in the equation is made clear in this theory. The
pendulum equation is numerically integrated and the phase diagrams are compared to those
obtained by using the theory. Some periodic solutions were found that are not necessarily
orbitally stable.

The pendulum equation is rewritten, in dimensionless form, as

f 2θ̈ + εf θ̇ + sin θ = a sin t (1.2)

where f ≡ ωd/ω0, ε ≡ σ/ω0, a ≡ A/(w0)
2 and t ≡ ωdτ . The dot now means derivation

with respect to the dimensionless variable t .
The main ideas of the theory are exposed in section 2.
In section 3, an iterative method is established in order to numerically solve the equations

obtained in section 2, when the oscillation frequency is the same as the driving frequency. In
section 4, we find a sufficient condition for stability. Numerical results are presented as figures.
In sections 5 and 6 we discuss our findings.

2. Periodic solutions

Periodic solutions of (1.2) are represented by a Fourier series in the form

θ = �0 +
∞∑
m=1

Cm sin

(
m

p
t − δm

)
(2.1)

where p is an integer number with the meaning of the oscillation period relative to the driving
period. Thus, for an oscillation period equal to three times the driving period we have p = 3.

�0 is the average position and Cm and δm are constants representing the amplitude and
phase of the harmonic oscillation with frequency m/p.

If this expression is substituted into (1.2), the linear terms are Fourier series obtained by
straightforward derivation; the nonlinear term sin θ will also be periodic and it can be written
as another Fourier series by using the exponential form of sin θ and the identity for cylindrical
Bessel functions:

eiq sin x =
+∞∑

�=−∞
J�(q)e

i�x. (2.2)

J�(q) is a cylindrical Bessel function of order �.
We write

eiθ = ei�0

∞∏
m=1

eiCm sin( m
p
t−δm)

= ei�0

+∞∑
�1=−∞

J�1(C1)e
i�1(t/p−δ1)

+∞∑
�2=−∞

J�2(C2)e
i�2(2t/p−δ2)

×
+∞∑
�3−∞

J�3(C3)e
i�3(3t/p−δ3) . . .

= ei�0

+∞∑
s=−∞

eist/p

[∑s
J�1(C1)J�2(C2)J�3(C3) . . . e

−i(�1δ1+�2δ2+�3δ3+···)
]

(2.3)
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where
∑s is the sum over all possible values of {�1, �2, . . .} that satisfy

�1 + 2�2 + 3�3 + · · · = s.

We use the notations

�t ≡
∞∑
m=1

�m and J �t ≡ J�1(C1)J�2(C2) . . .

to make the expressions brief, whenever there is no problem of confusion.
Also, some indices are omitted for the same reason. Thus

∞∑
m=1

�m ≡
∑

�m

∞∑
m=1

m�m ≡
∑

m�m and
∞∑
m=1

�mδm ≡
∑

�mδm.

By assembling all the contributions of Fourier series in (1.2) and matching the two sides of
the equation we obtain a set of equations, containingCm and δm, one for each harmonic (s = 0,
s = p and other values of s).

The algebra is reported in the appendix.

Non-oscillatory term (s = 0)

sin�0

∑
�t=even

0J�1(C1)J�2(C2) . . . cos

( ∞∑
m=1

�mδm

)

− cos�0

∑
�t=odd

0J�1(C1)J�2(C2) . . . sin

( ∞∑
m=1

�mδm

)
= 0 (2.4)

∑
�t=even

s is the sum over all possible values of {�1, �2, . . .} that satisfy �1 + 2�2 + 3�3 + · · · = s

and �t = even.
Analogous notation is used for �t = odd number.

Harmonic p

(−f 2 + iεf )Cpe−iδp + 2i sin�0

∑
�t=even

pJ �t e−i
∑

�mδm + 2 cos�0

∑
�t=odd

pJ �t e−i
∑

�mδm = a. (2.5)

There is a term in
∑p that is zero if Cp = 0 and is 	= 0 if Cp 	= 0, even if all the other

coefficients Cm (m 	= p) are zero. This is

2 cos�0J0(C1)J0(C2) . . . J1(Cp) . . . e
−iδp (2.6)

(�p = 1; �m = 0 for m 	= p;∑m�m = p). It is convenient to reorganize (2.5) by isolating
this term.

We call jp(C) the product of all zero-order Bessel functions but J0(Cp) and Dp(C, δ) the
nonlinear part, excluding (2.6):

jp(C) ≡ J0(C1)J0(C2) . . . J0(Cp) . . . J0(Cm) . . . /J0(Cp) (2.7)

−Dp(C, δ) ≡ 2i sin�0

∑
�t=even

pJ �t e−i
∑

�mδm + 2 cos�0

∑
�t=odd

pJ �t e−i
∑

�mδm

−2 cos�0jp(C)J1(Cp)e
−iδp

C ≡ {C1, C2, C3, . . .} and δ ≡ {δ1, δ2, δ3, . . .}.
(2.8)

Equation (2.5) becomes

(−f 2 + iεf )Cp + 2 cos�0jp(C)J1(Cp) = (a + Dp(C, δ))e
iδp . (2.9)

If the right-hand side of this equation is different from zero, Cp must be different from zero.
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Harmonic s 	= p

(
−
(
f s

p

)2

+ iε
f s

p

)
Cse

−iδs + 2i sin�0

∑
�t=even

sJ �t e−i
∑

�mδm + 2 cos�0

∑
�t=odd

sJ �t e−i
∑

�mδm = 0.

(2.10)

This equation is also reorganized in a similar way. Using the same notations(
−
(
f s

p

)2

+ iε
f s

p

)
Cs + 2 cos�0js(C)J1(Cs) = Ds(C, δ)e

iδs . (2.11)

If Cj = 0, then J�j (Cj ) = 0 unless �j = 0. So, if we restrict the number of coefficients
(Cj = 0 for j > M), only terms with �j = 0, j > M will contribute to Ds(C, δ). Thus,
Ds(C, δ) will no longer contain an infinite product of Bessel functions.

2.1. Small oscillations

For small oscillations (C1, C2 . . . � 1) around equilibrium (�0 � 0), js(C) � 1 and
J1(Cs) � Cs/2 and (2.9) and (2.11) are reduced to

(−f 2 + iεf + 1)Cpe−iδp � a

and (
−
(
f s

p

)2

+ iε
f s

p
+ 1

)
Cse

−iδs � 0 for s 	= p.

This is the equation of a damped linear pendulum, which allows for the stationary solution:

Cs = 0 for s 	= p

Cp � a√
(1 − f 2)2 + ε2f 2

δp = tan−1 εf

1 − f 2
.

2.2. Harmonics

For large-amplitude oscillations, the terms Ds become important. These terms represent the
coupling among different harmonic oscillations.

For illustration, table 1 is given to show all the possible combinations of {�1, �2, . . . , �6},
with �t = odd number and s ≡ ∑

m�m = 2 and s = 3, assuming

|�i | � 4 for i = 1, 2, . . . , 6 and
6∑
i=1

|�i | � 4.

These assumptions are reasonable if only the first six coefficients are relevant and the Bessel
functions of order higher than four are negligible.

For s = 2, for example, the first row means {�1, �2, �3, �4, �5, �6} = {−1,−1, 0, 0, 0, 1}.
Its contribution to D2(C, δ) is

−2 cos�0J−1(C1)J−1(C2)J0(C3)J0(C4)J0(C5)J1(C6)e
i(δ1+δ2−δ6).

This term yields second harmonics.
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Table 1. s = 2; �t = odd; |�i | � 4.

�1 �2 �3 �4 �5 �6

0 −2 0 0 0 1
−1 −1 0 0 1 0

1 −1 1 0 0 0
−1 0 −1 0 0 1

1 0 −1 1 0 0
1 0 0 −1 1 0
1 0 0 0 −1 1

−2 0 0 1 0 0
0 0 0 2 0 −1
0 0 1 0 1 −1
0 0 1 1 −1 0
0 0 2 −1 0 0
0 1 0 0 0 0

Table 2. s = 3; �t = odd; |�i | � 4.

�1 �2 �3 �4 �5 �6

−1 −1 0 0 0 1
1 0 −1 0 1 0
1 0 0 −1 0 1
3 0 0 0 0 0

−2 0 0 0 1 0
0 0 0 1 1 −1
0 0 0 2 −1 0
0 0 1 0 0 0
0 1 −1 1 0 0
0 1 0 −1 1 0
0 1 0 0 −1 1

−1 2 0 0 0 0

2.3. Energy balance

Another equation, which is not independent from (1.2) (and, therefore, from (2.4), (2.9)
and (2.11)), that may be useful is the energy balance equation. It can be derived by
multiplying (1.2) by θ̇ :

d

dt

(
f 2 θ̇

2

2
− cos θ

)
+ εf θ̇2 = θ̇a sin t.

We seek for periodic motions with period p × 2π . Integration in one period of the first
term (total energy) is 0 and the result is that, in one period, the energy dissipation is equal to
energy input: ∫ 2pπ

0
εf θ̇2 dt =

∫ 2pπ

0
θ̇a sin t dt.

Using (2.1) we obtain

aCp sin δp = εf

∞∑
s=1

(
sCs

p

)2

. (2.12)
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3. Iteration method (p = 1 solutions)

We consider stationary solutions with fundamental frequency of oscillation equal to the
frequency of the driving force (p = 1).

If Ci are small, D1(C, δ) in (2.9) is small. As a 	= 0, C1 must be 	= 0; that is to say,
the external force directly drives the oscillation with unit frequency. D1(C, δ) represents the
feedback due to other harmonics.

According to (2.11), if Ds(C, δ) 	= 0, s 	= 1, this term yields oscillation with frequency s.
Therefore Ds(C, δ) is the driving term of each one of other harmonics. This coupling effect
among different harmonics arises due to the nonlinear term in the original equation.

In this paper we assume the following.

(i) Ci � 0. This is not restrictive as the sign can be absorbed by the argument δi .
(ii) C1 � Ci for i 	= 1. This is expected to be true as i 	= 1 oscillation is not directly driven

by the external force. This assumption may fail if some kind of resonance occurs at higher
frequency. This did not happen in our calculations.

(iii) Ci = 0 for i > 6. The number 6 was chosen arbitrarily. We did not expect very high-order
harmonics; we thought it would be sensible to take at least three odd-order harmonics. A
posteriori, we found this was a good guess.

(iv) |�1| � 7 and |�i | � 3 for i 	= 1. This means that we neglect Bessel functions J�1(C1) and
J�i (Ci) for |�1| > 7 and |�i | > 3, i 	= 1. In our calculations higher values of �i did not
improve the results, except for one case, shown in figure 13 below.

We establish an iterative procedure: we start from approximate values of the coefficients

C0 ≡ {C0
1 , C

0
2 , . . . , C

0
6 } and δ0 ≡ {δ0

1, δ
0
2, . . . , δ

0
6}

to find more accurate values

C ≡ {C1, C2, . . . , C6} and δ ≡ {δ1, δ2, . . . , δ6}.

3.1. First-order approximation

3.1.1. Average position �0. We write (2.4) with

C0
m ≡ 0 m 	= 1

in order to find �0.
As J�(0) = 0 for � 	= 0, only one term may be different from zero: � ≡ {�1, 0, 0, 0, 0, 0}.

As
∑

m�m ≡ s = 0, also �1 = 0. Equation (2.4) reduces to

sin�0J0(C
0
1 ) = 0.

Thus, either �0 = 0 or �0 = π .
Phase paths of periodic motions surround either the lowest position of the pendulum (stable

equilibrium point) or the top position (unstable equilibrium point).

3.1.2. Equation for s = 1. Equation (2.9) is written

(−f 2 + iεf )C1 + 2 cos�0j1(C
0)J1(C1) = (a + D1(C

′, δ0))eiδ1 (3.1)

where

C ′ ≡ {C1, C
0
2 , C

0
3 , C

0
4 , C

0
5 , C

0
6 }.
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Figure 1. First-order approximation. ε = 0.2;�0 = 0.

C1 is obtained from

|(−f 2 + iεf )C1 + 2 cos�0j1(C
0)J1(C1)| = |a + D1(C

′, δ0)| (3.2)

and δ1 from

δ1 = Arg

{
(−f 2 + iεf )C1 + 2 cos�0j1(C

0)J1(C1)

a + D1(C ′, δ0)

}
. (3.3)

Alternatively, δ1 can be obtained using the energy balance equation (2.12):

aC1 sin δ1 = εf

∞∑
s=1

(sCs)
2.

In our calculations, the results were found to be consistent.
Again, as C0

m = 0, for m 	= 1, J�m(C
0
m) = 0 unless �m = 0; s = ∑

m�m = �1 = 1 and
�t = 1. Therefore

D1(C
′, δ0) = 0.

Figures 1 and 2 show a as a function of C1 for ε = 0.2 and �0 = 0 and �0 = π

respectively.
In principle, the same force a may yield different oscillations C1.

3.1.3. Equation for s = 2. We write (2.11) as

(−(2f )2 + i2εf )C2 + 2 cos�0j2(C
′)J1(C2) = D2(C

′′, δ′)eiδ2 (3.4)

where C ′′ ≡ {C1, C2, C
0
3 , C

0
4 , C

0
5 , C

0
6 } and δ′ ≡ {δ1, δ

0
2, δ

0
3, δ

0
4, δ

0
5, δ

0
6}.

C2 	= 0 if D2(C
′′, δ′) 	= 0. D2(C

′′, δ′) is given by

D2(C
′′, δ′) = −2 cos�0

∑
�t=odd

J�1(C1)J�2(C2)J�3(C
0
3 ) . . . e

−i
∑

�mδm .

Only terms with �3 = · · · = �6 = 0 survive. We see in the table 1 that there are none, in this
approximation. Thus

D2(C
′′, δ′) = 0 and therefore C2 = 0. (3.5)

If higher values of �i are taken,C2 may become 	= 0, but, still very small as |J�1(C1)| � 1,
for |�1| � 1.
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Figure 2. First-order approximation. ε = 0.2;�0 = π .
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Figure 3. First-order approximation. Stable p = 1 solution below the curve.

3.1.4. Equation for s � 3. We write (2.11) for s = 3 using

C ′′′ ≡ {C1, C2, C3, C
0
4 , C

0
5 , C

0
6 } and δ′′ ≡ {δ1, δ2, δ

0
3, δ

0
4, δ

0
5, δ

0
6}.

In table 1, immediately we see the set of values � ≡ {3, 0, 0, 0, 0, 0} that corresponds to
a non-zero driving term:

D3(C
′′′, δ′′) � −2 cos�0J3(C1)J0(C3)e

−3iδ1 .

Therefore, C1 	= 0 yields oscillation with frequency 3. C3 is the solution of(
−
(

3f

p

)2

+ iε
3f

p

)
C3 + 2 cos�0j3(C

′′)J1(C3) = D3(C
′′′, δ′′)eiδ3 . (3.6)

δ3 = Arg

{
(−( 3f

p
)2 + iε 3f

p
)C3 + 2 cos�0j3(C

′′)J1(C3)

D3(C ′′′, δ′′)

}
. (3.7)
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Figure 4. ε = 0.2; a = 0.35; f = 0.7. Codd = {0.757, 0.004 89, 0}; δodd = {0.308, 0.756, 0};
{x0, v0} = {−0.233, 0.732}. Codd = {1.96, 0.0588, 0.002 71}; δodd = {0.912, 2.64, 4.44};
{x0, v0} = {−1.58, 1.04}. Codd = {2.38, 0.0886, 0.005 57}; δodd = {1.83, 5.4, 2.78}; {x0, v0} =
{−2.24,−0.475}.

-3 -2 -1 0 1 2 3

x

-3

-2

-1

0

1

2

3

v 

Figure 5. ε = 0.2; a = 0.5; f = 0.6. Codd = {0.898, 0.0117, 0, 0}; δodd = {0.218, 0.506, 0};
{x0, v0} = {−0.2, 0.907}. Codd = {2.06, 0.0901, 0.0054}; δodd = {0.526, 1.46, 2.48}; {x0, v0} =
{−1.12, 1.79}; unstable. Codd = {2.99, 0.175, 0.018}; δodd = {2.31, 0.534, 5.14}; {x0, v0} =
{−2.29,−1.52}; unstable.

A similar analysis leads to the conclusion that C4 = C6 = 0 and that C3 and C5 can be
	= 0.

3.2. Higher-order approximation

We assume for C0 and δ0 the newly calculated values. All even-order terms are null.
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Figure 6. ε = 0.2; a = 0.8; f = 0.2. Codd = {0.947, 0.069, 0.025}; δodd = {0.0505,
−2.68, 2.99}; {x0, v0} = {−0.0196, 0.637}.
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Figure 7. ε = 0.2; a = 0.8; f = 0.3. Codd = {1.01, 0.213, 0.016}; δodd = {0.107,−0.996, 5.51};
{x0, v0} = {0.904, 0.589}.

3.2.1. Average position �0. Only terms �2 = �4 = �6 = 0 are relevant in the s = 0
equation (2.4). We may write

s ≡
∑

m�m = �t + (�2 + 3�4 + 5�6 + · · ·) + (2�3 + 4�5 + 6�7 + · · ·).
So

parity of s = parity of �t + parity of
∑

�2j .

�t must be an even number and from (2.4) we draw the conclusion that, if we do not have
even-order coefficients (C2j = 0),

�0 = 0 or �0 = π. (3.8)

3.2.2. Equation for s = 1. C1 is modulated by a feedback effect related to D1(C
′, δ0).
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Figure 8. ε = 0.2; a = 0.8; f = 0.35. Codd = {1.06, 0.11, 0.0057}; δodd = {0.102,
−0.225,−0.094}; {x0, v0} = {−0.0825, 1.4}.
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Figure 9. ε = 0.2; a = 0.8; f = 0.47. Codd = {1.41, 0.071, 0.0034}; δodd =
{0.17, 0.314, 0.599}; {x0, v0} = {−0.263, 1.61}.

3.2.3. Equation for s = 2. Relevant terms have �4 = �6 = 0 and they are found, in table 1,
to be

{−1,−1, 0, 0, 1, 0} and {1,−1, 1, 0, 0, 0}.

D2(C
′′, δ′) can be 	= 0 and therefore C2 can be 	= 0. All harmonics can be excited in

different degrees.

3.2.4. Equation for s � 3. The same procedure is repeated until the solution converges.
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Figure 10. ε = 0.2; a = 0.52; f = 0.689. Codd = {2.7, 0.115, 0.0089}; δodd = {2.33,
0.609, 5.26}; {x0, v0} = {−2.02,−1.55}. {x0, v0} = {−2.32,−1.78} results in p = 3.

-6 -4 -2 0 2

x

-3

-2

-1

0

1

2

3

v 

Figure 11. ε = 0.2; a = 0.52; f = 0.65. Codd = {2.84, 0.139, 0.0123}; δodd = {2.33,
0.609, 5.26}; {x0, v0} = {−2.13,−1.58}. {x0, v0} = {−2.02,−1.5} results in chaotic motion.

4. Stability of a solution

Let θ̄ (t) be a stationary solution of (1.2). A deviation δθ from θ̄ (t) satisfies the equation

f 2δθ̈ + εf δθ̇ + sin(θ̄ + δθ)− sin θ̄ = 0. (4.1)

For small δθ this equation is linearized to

f 2δθ̈ + εf δθ̇ + cos θ̄ δθ � 0. (4.2)

|δθ | is a decreasing function of t if cos θ̄ > 0. Therefore if cos θ̄ > 0 the solution is stable.
For p = 1 oscillations, assuming that C1 � Cm, m 	= 1, we may say that for �0 = 0 and

C1 � π/2 the solution is stable.
The behaviour of the system is determined by the dimensionless damping factor ε, the

driving frequency f and the driving amplitude a.
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Figure 12. �0 = π ; ε = 0.2; a = 0.78; f = 0.45. Codd = {5.58, 0.287, 0.135}; δodd = {2.41,
3.95, 2.53}; {x0, v0} = {−0.456,−5.29}.
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Figure 13. ε = 0.2; a = 0.8; f = 0.45. Codd = {1.3, 0.067, 0.003}; δodd = {0.15,
0.228, 0.467}; {x0, v0} = {−0.212, 1.49}. Codd = {5.65, 0.267, 0.139}; δodd = {2.42, 4., 2.6};
{|�1|, |�3|, |�5|} � {9, 5, 5}; {x0, v0} = {−0.445,−5.37}.

By using (3.2) with ε = 0.2,C ′ ≡ {C1, 0, 0, 0, 0, 0} (first-order approximation), we found
for different values of f the critical values of external force a, in the sense that, for a � acritical,
there is a stable period 1 solution. There may be more than one; there is at least one. acritical is
the value of (3.2) for C1 = π/2. The curve is shown in figure 3. This represents very nearly
the frontier between the wide, stable period 1 region and the region formed by bands with
complex periodic solutions or chaotic solutions shown in figure 2 in the article of Pedersen
and Davidson [20].
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Figure 14. ε = 0.2; a = 1.5; f = 0.7. Codd = {3.51, 0.161, 0.0185}; δodd = {2.8, 2.03, 1.36};
{x0, v0} = {−1.34,−3.5} is a point of the theoretical orbit. This is a rather high-amplitude forcing
and the motion is totally unstable.

5. Results of numerical calculations

The present theory is used to find solutions for ε = 0.2 and the phase diagrams are compared
to results of numerical integration of the original equation (1.2).

In the figures full lines were obtained by numerical integrations and the dots by using this
theory.

Sometimes, the basin of the solution is very narrow. The sensitive dependence of the
motion on initial conditions makes it difficult to find, numerically, some orbit. We use as
initial conditions one point of the analytical solution. In the figures, {x0, v0} are the initial
values of {θ, θ̇} used for numerical integration.

Even-order coefficients were found to be negligible in our calculations. In the figure
captions, only odd-order terms are given: Codd ≡ {C1, C3, C5} and δodd ≡ {δ1, δ3, δ5}.

According to figure 1, it is possible to have more than one periodic motion for the
same values of ε, a and f . We found for a = 0.35 and f = 0.7 three stable solutions,
as predicted (figure 4).

For a = 0.5 and f = 0.6 only one of the solutions (C1 � 0.898) was found to be
stable (figure 5).

For �0 = 0, C1 � π/2 the solution must be stable. This falls below the curve in figure 3.
We can assert that, in this region, there is, at least, one stable period 1 solution (figures 6–9).
Outside this region it is not certain.

For a = 0.8 and f = 0.48 no stable solution was found.
For a = 0.52 and f = 0.689 it was possible to reproduce quite exactly the results

in the book by Rasband [11] (figure 6.10, p 126). The motion is very sensitive to initial
conditions. For slightly different initial conditions numerical integration may converge to a
period 3 oscillation. Period 1 and 3 solutions are shown in figure 10.

For a = 0.52 and f = 0.65 there is a stable solution. For slightly different initial
conditions the motion may depart from the orbit; the solution is chaotic (figure 11).

�0 = π , represents oscillation around the top position of the pendulum. Not more than
one solution was found for each group of parameters (figures 12 and 13). In order to find
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figure 13, it was necessary to take Bessel functions of much higher order: values of �1 and �3

up to nine and five, respectively. These solutions are far more unstable than the others.
According to figure 1, large-amplitude forces (largea) should produce very high-amplitude

motions. We could easily find some analytical solutions but numerical integration of (1.2) is
very unstable as shown in figure 14. For higher-amplitude motions we have to use higher-order
Bessel functions and more terms.

6. Conclusions

A pendulum oscillation contains many harmonics that arise from nonlinearity of the equation
of motion. This theory allows us to find systematically all period 1 solutions.

The theory itself is simple but the results are quite remarkable.

• Depending on the viscosity ε of the medium, it is possible to delimit the values of system
parameters a and f in order to have, at least, one stable period 1 oscillation.

• There is a maximum number of stable solutions for each set of system parameters (ε, a, f ).
• There may be stable oscillation around the top position of the pendulum.

A similar setup can be extended to find multiple-period solutions (p = 3, for example) as
well as to analyse other nonlinear equations.
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Appendix

Instead of (1.2) we use

2if 2θ̈ + 2iεf θ̇ + eiθ − e−iθ = a(eit − e−it ). (A.1)

Each term is written as a complex Fourier series. Thus

2if 2θ̈ = f 2
∞∑
m=1

Cm

(
−m2

p2

)
(ei((m/p)t−δm) − e−i((m/p)t−δm)) and

2iεf θ̇ = εf

∞∑
m=1

Cm

(
i
m

p

)
(ei((m/p)t−δm) + e−i((m/p)t−δm)).

(A.2)

Equation (2.3) is written

eiθ = ei�0

+∞∑
s=−∞

eist/p

[∑s
J�1(C1)J�2(C2)J�3(C3) . . . e

−i
∑

�mδm

]

= ei�0

+∞∑
s=1

eist/p

[∑s
J�1(C1)J�2(C2)J�3(C3) . . . e

−i
∑

�mδm

]

+ei�0

+∞∑
s=1

e−ist/p

[∑s
J−�1(C1)J−�2(C2)J−�3(C3) . . . e

+i
∑

�mδm

]

+ei�0

[∑0
J�1(C1)J�2(C2)J�3(C3) . . . e

−i
∑

�mδm

]
. (A.3)
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Using the identity J−� = (−1)�J�, we obtain

eiθ = ei�0

+∞∑
s=1

eist/p
∑s

J �t e−i
∑

�mδm + ei�0

+∞∑
s=1

e−ist/p
∑s

(−1)�t J �t e+i
∑

�mδm

+ei�0
∑0

J �t e−i
∑

�mδm (A.4)

where �t ≡ ∑
�m and J �t ≡ J�1(C1)J�2(C2) . . . , and

eiθ − e−iθ =
+∞∑
s=1

eist/p
∑s

J �t e−i
∑

�mδm(ei�0 − (−1)�t e−i�0)

+
+∞∑
s=1

e−ist/p
∑s

(−1)�t J �t e+i
∑

�mδm(ei�0 − (−1)�t e−i�0)

+ei�0
∑0

J �t e−i
∑

�mδm − e−i�0
∑0

J �t e+i
∑

�mδm . (A.5)

By substituting (A.2) and (A.5) into (A.1), we obtain one algebraic equation for each harmonic:

• s > 0; s 	= p(
−
(
f s

p

)2

+ iε
f s

p

)
Cse

−iδs +
∑s

J �t e−i
∑

�mδm(ei�0 − (−1)�t e−i�0) = 0 (A.6)

• s = p

(−f 2 + iεf )Cpe−iδp +
∑p

J �t e−i
∑

�mδm(ei�0 − (−1)�t e−i�0) = a (A.7)

• s = 0

ei�0
∑0

J �t e−i
∑

�mδm − e−i�0
∑0

J �t e+i
∑

�mδm = 0. (A.8)

Equations (2.5) and (2.10) are derived at once from (A.6) and (A.7).
In (A.8),

∑0 is the sum over all possible values of {�1, �2, . . .} that satisfy �1 + 2�2 + 3�3 +
· · · = 0. If {�1, �2, . . .} is part of the set, then {−�1,−�2, . . .} is also part of it. Therefore∑0

J �t e+i
∑

�mδm ≡
∑0

J�1(C1)J�2(C2) . . . e
+i
∑

�mδm

=
∑0

J−�1(C1)J−�2(C2) . . . e
−i
∑

�mδm

=
∑0

(−1)�t J�1(C1)J�2(C2) . . . e
−i
∑

�mδm (A.9)

and (A.8) will be∑0
(ei�0 − (−1)�t e−i�0)J �t e−i

∑
�mδm = 0. (A.10)

This is written ∑
�t=even

02i sin�0J
�t e−i

∑
�mδm +

∑
�t=odd

02 cos�0J
�t e−i

∑
�mδm = 0. (A.11)

The left-hand side of (A.8) is a real number. The imaginary part is (2.4).
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